±â°èÇнÀ(Machine Learning)
- 0. AlphaGoÀÇ ÀΰøÁö´É ¾Ë°í¸®Áò ºÐ¼® º¸°í¼ (Ãâó: SPRi) [PDF]
- 1. Introduction [PDF]
- 2. Supervised Learning [PDF]
- 3. Bayesian Decision theory [PDF]
- 4-1. Parametric Methods - 1 [PDF]
- 4-2. Parametric Methods - 2 [PDF]
- 5. Multivariate Methods [PDF]
- 6-1. Dimensionality Reduction - 1 [PDF]
- 6-2. Dimensionality Reduction - 2 [PDF]
- 6-3. Dimensionality Reduction - 3 [PDF] (wiki: Nonlinear dimensionality reduction) (t-SNE demo)
- 7. Clustering [PDF]
- 8. Nonparametric Methods [PDF]
- 9. Decision Trees [PDF]
- 10. Linear Discrimination [PDF]
- 11. Multilayer Perceptrons [PDF]
- 11-2. Deep Learning - Introduction [PDF]
- 11-3. Convolutional Neural Network (taken from http://www.cse.ust.hk/~leichen/courses/FYTG-5101) [PDF]
- 11-4. Convolutional Neural Network - 2 (taken from http://web.engr.illinois.edu/~slazebni/spring14) [PDF]
- 11-5. CNN - Deep Residual Learning (taken from http://kaiminghe.com/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf) [PDF] (ConvNetJS)
- 11-6. RNN and NLP application [PDF]
- 11-7. Mini-batch gradient descent, momentum method, adaptive learning rate, and rmsprop (taken from http://www.cs.toronto.edu/~tijmen/csc321/) [PDF] [PDF-2] (SGD, momentum, and RMSprop - 1) (SGD, momentum, and RMSprop - 2)
- 11-8. Batch Normalization (taken from https://bcourses.berkeley.edu/ CS294) [PDF]
- 11-9. Generative Adversarial Networks [PDF] [example] [video-1]
- 12. Local Models
- 13. Kernel Machines
- 14. Bayesian Estimation
- 15. Hidden Markov Models
- 16. Graphical Models
- 17. Combining Multiple Learners
- 18. Reinforcement Learning [PDF]
- 19. Design and Analysis of Machine Learning Experiments