±×·¡ÇÁ ÀÌ·Ð
- 0. °Àǰèȹ
- ¼ö¾÷¸ñÇ¥:
ÀÚ¿¬¾ð¾î󸮿¡ »ç¿ëµÇ´Â ±×·¡ÇÁ ÀÌ·Ð ¹× ±â°èÇнÀ ¾Ë°í¸®ÁòÀ» ÀÌÇØÇϰí ÀÚ¿¬¾îó¸® ÀÀ¿ë¿¡ Á÷Á¢ Àû¿ëÇØ º¸´Â °ÍÀ» ¸ñÇ¥·Î ÇÑ´Ù.
- ´ã´ç±³¼ö: ÀÌâ±â (ÇѺû°ü 301È£, leeck@kangwon.ac.kr)
- Office hours: Tuesday PM 3:00 ~ 4:00
- ¼ö¾÷¿î¿µ¹æ½Ä: °ÀÇ ¹× ÇÁ·ÎÁ§Æ®
- ¼ºÀûÆò°¡¹æ½Ä: Áß°£°í»ç 40% + ±â¸»°í»ç 50% + Ãâ¼®/±âŸ 20%
- 1. Introduction to Graph Theory [PDF]
- 2-1. Graph-based Algorithms [PDF]
- 2-2. Graph-based Algorithms (Max-flow and min-cut) [PDF] (taken from https://www.cs.princeton.edu/courses/archive/spring13/cos423)
- 3. Graph-based IR - HITS, PageRank [PDF]
- 4-1. Graph-based NLP [PDF]
- 4-2. Graph-based NLP (Dependency Parsing) [PDF]
- 5. Node Embedding [PDF] (taken from Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018)
- 6. KB Embedding [PDF]
- 7-1. Word Embedding (taken from http://web.stanford.edu/class/cs224n) [PDF]
- 7-2. Advanced Word Embedding (taken from http://web.stanford.edu/class/cs224n) [PDF]
- 9-1. Recurrent Neural Networks (taken from http://web.stanford.edu/class/cs224n) [PDF]
- 9-2. Fancy Recurrent Neural Networks for Machine Translation (taken from http://web.stanford.edu/class/cs224n) [PDF]