


Play Game: Deep Q Networks (DQN) 



Introduction 
·Game-playing: Sequence of moves to win a game 

·Robot in a maze: Sequence of actions to find a goal 

·Agent has a state in an environment, takes an action and 
sometimes receives reward and the state changes 

·Credit-assignment 

·Learn a policy 
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Single State: K-armed Bandit 
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· Among K levers, choose  
   the one that pays best 
 Q(a): value of action a 
 Reward is ra 

 Set Q(a) = ra 

 Choose a* if  
  Q(a*)=maxa Q(a) 
  
· Rewards stochastic (keep an expected reward): 



Elements of RL  
(Markov Decision Processes) 
·st : State of agent at time t 

·at: Action taken at time t 

·In st, action at is taken, clock ticks and reward rt+1 is 
received and state changes to st+1 

·Next state prob: P (st+1 | st , at ) 

·Reward prob: p (rt+1 | st , at ) 

·Initial state(s), goal state(s) 

·Episode (trial) of actions from initial state to goal 

·(Sutton and Barto, 1998; Kaelbling et al., 1996) 
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Policy and Cumulative Reward 
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·Policy, 

·Value of a policy, 

·Finite-horizon: 

 

 

·Infinite horizon:   
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·Environment, P (st+1 | st , at ), p (rt+1 | st , at ), is known 

·There is no need for exploration 

·Can be solved using dynamic programming 

·Solve for 

 

 

·Optimal policy 

Model-Based Learning 
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Value Iteration 
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Policy Iteration 
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Model-free Learning 
·Monte-Carlo Learning 
·Episode  update   

·Episode      reward   state  value 
function    

·  MC(Monte-Carlo)    episode    
  

·Online         episode   

·Temporal Difference Learning 
·Time step  update   

·Episode    DP  time step   
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Temporal Difference Learning 
·Environment, P (st+1 | st , at ), p (rt+1 | st , at ), is not 

known; model-free learning 

·There is need for exploration to sample from  

 P (st+1 | st , at ) and p (rt+1 | st , at ) 

·Use the reward received in the next time step to update 
the value of current state (action) 

·The temporal difference between the value of the 
current action and the value discounted from the next 
state  
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· -ʁgreedyΥ ²ƛǘƘ ǇǊ ʶΣŎƘƻƻǎŜ ƻƴŜ ŀŎǘƛƻƴ ŀǘ random 
uniformly; and choose the best action with pr 1-  ʁ

·Probabilistic: 

 

 

·Move smoothly from exploration/exploitation.  

·5ŜŎǊŜŀǎŜ ʶ 

·Annealing 

Exploration Strategies 
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·Deterministic: single possible reward and next state 

 
 

 used as an update rule (backup) 
 
 
 Starting at zero, Q values increase, never decrease 

Deterministic Rewards and Actions 
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/ƻƴǎƛŘŜǊ ǘƘŜ ǾŀƭǳŜ ƻŦ ŀŎǘƛƻƴ ƳŀǊƪŜŘ ōȅ ΨϝΩΥ 
If path A is seen first, Q(*)=0.9*max(0,81)=73 
Then B is seen, Q(*)=0.9*max(100,81)=90 

Or, 
If path B is seen first, Q(*)=0.9*max(100,0)=90 
Then A is seen, Q(*)=0.9*max(100,81)=90 

Q values increase but never decrease 
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Nondeterministic Rewards and Actions 
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·When next states and rewards are nondeterministic (there is 
an opponent or randomness in the environment), we keep a 
running averages (expected values) instead as assignments 

·Q-learning (Watkins and Dayan, 1992): 

 

 

·Off-policy vs on-policy (Sarsa) 
·Off-policy: the best next action is used without using the policy 

·On-policy: the policy is used to determine also the next action 

·Learning V (TD-learning: Sutton, 1988) 
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Q-learning 
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Sarsa 
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Eligibility Traces 
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·The previous algorithm are one-step 

·  time-step   

·Keep a record of previously visited states (actions) 

·n-step    update 
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·Tabular: Q (s , a) or V (s) stored in a table 
·#states and #actions are large Ą the size of table is quite large 

·States and actions may be continuous 

·The search space is large Ą too many episodes may be needed 

·Regressor: Use a learner to estimate Q (s , a) or V (s) 

 

 

Generalization 
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Deep Q Networks (DQN) 

·Playing Atari with deep 
reinforcement learning 

·Input data  law pixel  
 

·Convolutional neural 
network  function 
approximator   

·Experience Replay 
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Deep Q-learning 
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Partially Observable States 

·The agent does not know its state but receives an 
observation  p(ot+1| st,at) which can be used to infer a 
belief about states (belief stats, btă State Estimator) 

·Partially observable  

 MDP 
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