

Play Game: Deep Q Networks (DQN)

Introduction
·Game-playing: Sequence of moves to win a game

·Robot in a maze: Sequence of actions to find a goal

·Agent has a state in an environment, takes an action and
sometimes receives reward and the state changes

·Credit-assignment

·Learn a policy

3

Single State: K-armed Bandit

() () () ()[]aQaraQaQ tttt -+« ++ 11 h

4

· Among K levers, choose
 the one that pays best
 Q(a): value of action a
 Reward is ra

 Set Q(a) = ra

 Choose a* if
 Q(a*)=maxa Q(a)

· Rewards stochastic (keep an expected reward):

Elements of RL
(Markov Decision Processes)
·st : State of agent at time t

·at: Action taken at time t

·In st, action at is taken, clock ticks and reward rt+1 is
received and state changes to st+1

·Next state prob: P (st+1 | st , at)

·Reward prob: p (rt+1 | st , at)

·Initial state(s), goal state(s)

·Episode (trial) of actions from initial state to goal

·(Sutton and Barto, 1998; Kaelbling et al., 1996)

5

Policy and Cumulative Reward
()tt sa pp =­ : AS

7

·Policy,

·Value of a policy,

·Finite-horizon:

·Infinite horizon:

()tsVp

() [] ù
ú

ø
é
ê

è
=+++= ä

=

++++

T

i
itTtttt rErrrEsV

1

21 3p

() []

rate discount the is 10

1

1

3

2

21

<¢

ù
ú

ø
é
ê

è
=+++= ä

¤

=

+

-

+++

g

gggp

i
it

i
tttt rErrrEsV 3

() ()

()[]

() [] ()()

() ()

() [] () ()1111

111

11

1

1

1

1

1

1

1
1

1

++++

+++

++

¤

=

++

-

+

¤

=

+

-

+
+

+

ä

ä

ä

ä

+=

=

ö
ö

÷

õ

æ
æ

ç

å
+=

+=

ù
ú

ø
é
ê

è
+=

ù
ú

ø
é
ê

è
=

"=

tt
a

s
tttttt

tttt
a

t

t
s

tttt
a

t

tt
a

i
it

i
t

a

i
it

i

a

ttt

asQassPrEasQ

saasQsV

sVassPrEsV

sVrE

rrE

rE

ssVsV

t
t

t

t
t

t

t

t

,,,

,

,

,

**

**

**

*

*

max|

 in of Valuemax

|max

max

max

max

max

g

g

g

gg

g

p

p

8

.ŜƭƭƳŀƴΩǎ Ŝǉǳŀǘƛƻƴ

·Environment, P (st+1 | st , at), p (rt+1 | st , at), is known

·There is no need for exploration

·Can be solved using dynamic programming

·Solve for

·Optimal policy

Model-Based Learning

() [] ()()
ö
ö

÷

õ

æ
æ

ç

å
+= +++ ä

+

111

1

t
s

tttt
a

t sVassPrEsV
t

t

** ,|max g

9

() [] ()()
ö
ö

÷

õ

æ
æ

ç

å
+= +++ ä

+

111

1

t
s

tttttt
a

t sVassPasrEs
tt

,|,|max arg gp

Value Iteration

10

Policy Iteration

11

Model-free Learning
·Monte-Carlo Learning
·Episode update

·Episode reward state value
function

· MC(Monte-Carlo) episode

·Online episode

·Temporal Difference Learning
·Time step update

·Episode DP time step

12

Temporal Difference Learning
·Environment, P (st+1 | st , at), p (rt+1 | st , at), is not

known; model-free learning

·There is need for exploration to sample from

 P (st+1 | st , at) and p (rt+1 | st , at)

·Use the reward received in the next time step to update
the value of current state (action)

·The temporal difference between the value of the
current action and the value discounted from the next
state

13

· -ʁgreedyΥ ²ƛǘƘ ǇǊ ʶΣŎƘƻƻǎŜ ƻƴŜ ŀŎǘƛƻƴ ŀǘ random
uniformly; and choose the best action with pr 1- ʁ

·Probabilistic:

·Move smoothly from exploration/exploitation.

·5ŜŎǊŜŀǎŜ ʶ

·Annealing

Exploration Strategies

() ()
()ä=

=
A

1
,exp

,exp
|

b
bsQ

asQ
saP

14

() ()[]
()[]ä=

=
A

1
/,exp

/,exp
|

b
TbsQ

TasQ
saP

·Deterministic: single possible reward and next state

 used as an update rule (backup)

 Starting at zero, Q values increase, never decrease

Deterministic Rewards and Actions
() [] () ()1111

1
1

++++
+

+

ä+= tt
a

s
tttttt asQassPrEasQ

t
t

,max,|, ** g

15

() ()111
1

+++
+

+= tt
a

ttt asQrasQ
t

,max, g

() ()111
1

+++
+

+« tt
a

ttt asQrasQ
t

,ȵmax,ȵ g

16

/ƻƴǎƛŘŜǊ ǘƘŜ ǾŀƭǳŜ ƻŦ ŀŎǘƛƻƴ ƳŀǊƪŜŘ ōȅ ΨϝΩΥ
If path A is seen first, Q(*)=0.9*max(0,81)=73
Then B is seen, Q(*)=0.9*max(100,81)=90

Or,
If path B is seen first, Q(*)=0.9*max(100,0)=90
Then A is seen, Q(*)=0.9*max(100,81)=90

Q values increase but never decrease

ʴҐлΦф

Nondeterministic Rewards and Actions

() () () ()()ttttt sVsVrsVsV -++« ++ 11 gh

17

·When next states and rewards are nondeterministic (there is
an opponent or randomness in the environment), we keep a
running averages (expected values) instead as assignments

·Q-learning (Watkins and Dayan, 1992):

·Off-policy vs on-policy (Sarsa)
·Off-policy: the best next action is used without using the policy

·On-policy: the policy is used to determine also the next action

·Learning V (TD-learning: Sutton, 1988)

() () () ()ö
÷

õ
æ
ç

å -++« +++
+

tttt
a

ttttt asQasQrasQasQ
t

,ȵ,ȵmax,ȵ,ȵ
111

1

gh

Q-learning

18

Sarsa

19

Eligibility Traces

()
()

() ()

() () () asaseasQasQ

asQasQr

ase

aass
ase

tttttt

tttttt

t

tt

t

,,,,,

,,

,
,

"+«

-+=

í
ì
ë ==
=

+++

-

hd

gd

gl

111

1

1

otherwise

 and if

20

·The previous algorithm are one-step

· time-step

·Keep a record of previously visited states (actions)

·n-step update

{ŀǊǎŀ ό˂ύ

21

·Tabular: Q (s , a) or V (s) stored in a table
·#states and #actions are large Ą the size of table is quite large

·States and actions may be continuous

·The search space is large Ą too many episodes may be needed

·Regressor: Use a learner to estimate Q (s , a) or V (s)

Generalization

() () ()[]
() ()[] ()

() ()

() zeros all with

yEligibilit

0ɗ1

111

111

2

111

eee

eɗ

ɗ

ɗ

ɗ

tttt

tttttt

tt

ttttttt

ttttt
t

asQ

asQasQr

asQasQasQr

asQasQrE

t

t

,

,,

,,,

,,

Ð+=

-+=

=D

Ð-+=D

-+=

-

+++

+++

+++

gl

gd

hd

gh

g

22

Deep Q Networks (DQN)

·Playing Atari with deep
reinforcement learning

·Input data law pixel

·Convolutional neural
network function
approximator

·Experience Replay

23

Deep Q-learning

24

Partially Observable States

·The agent does not know its state but receives an
observation p(ot+1| st,at) which can be used to infer a
belief about states (belief stats, btă State Estimator)

·Partially observable

 MDP

25

